Multivariate LSTM-FCNs for time series classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate LSTM-FCNs for Time Series Classification

Over the past decade, multivariate time series classification has been receiving a lot of attention. We propose augmenting the existing univariate time series classification models, LSTM-FCN and ALSTM-FCN with a squeeze and excitation block to further improve performance. Our proposed models outperform most of the state of the art models while requiring minimum preprocessing. The proposed model...

متن کامل

Multivariate Time Series Prediction via Temporal Classification

One of the important problems in many process industries is how to predict the occurrence of abnormal situations ahead of time in a multivariate time series environment. For example, in an oil refinery, hundreds of sensors (process variables) are installed at different sections of a process unit. These sensors constantly monitor the development of every stage of the process. Typically, each pro...

متن کامل

Multivariate Time Series Classification with WEASEL+MUSE

Multivariate time series (MTS) arise when multiple interconnected sensors record data over time. Dealing with this high-dimensional data is challenging for every classifier for at least two aspects: First, a MTS is not only characterized by individual feature values, but also by the co-occurrence of features in different dimensions. Second, this typically adds large amounts of irrelevant data a...

متن کامل

Multivariate Time Series Classification with Temporal Abstractions

The increase in the number of complex temporal datasets collected today has prompted the development of methods that extend classical machine learning and data mining methods to time-series data. This work focuses on methods for multivariate time-series classification. Time series classification is a challenging problem mostly because the number of temporal features that describe the data and a...

متن کامل

Temporal Classification: Extending the Classification Paradigm to Multivariate Time Series

Machine learning research has, to a great extent, ignored an important aspect of many real world applications: time. Existing concept learners predominantly operate on a static set of attributes; for example, classifying flowers described by leaf size, petal colour and petal count. The values of these attributes is assumed to be unchanging – the flower never grows or loses leaves. However, many...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Networks

سال: 2019

ISSN: 0893-6080

DOI: 10.1016/j.neunet.2019.04.014